Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.217
Filtrar
1.
Fish Shellfish Immunol ; 147: 109451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360193

RESUMO

Fibrinogen-related proteins (FREPs) are a family of glycoproteins that contain a fibrinogen-like (FBG) domain. Many members of FREPs have been shown to play an important role in innate immune response in both vertebrates and invertebrates. Here we reported the immune functional characterization of ANGPT4, member of FREPs, in zebrafish Danio rerio. Quantitative real time PCR showed that the expression of zebrafish ANGPT4 gene is up-regulated by the challenge with lipoteichoic acid (LTA) or lipopolysaccharides (LPS), hinting its involvement in innate immune response. The recombinant ANGPT4 (rANGPT4) could bind to both gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and the gram-negative bacteria Escherichia coli and Aeromonas hydrophila as well as the pathogen-associated molecular patterns (PAMPs) on the bacterial surfaces including LTA, LPS and peptidoglycan (PGN), suggesting it capable of identifying pathogens via LTA, LPS and PGN. In addition, rANGPT4 also displayed strong bacteriolytic activities against both gram-positive and -negative bacteria tested via inducing membrane depolarization and intracellular ROS production. Moreover, the bacterial clearance assay in vivo showed that the rANGPT4 could also accelerate the clearance of bacteria in zebrafish embryos/larvae. Finally, we showed that the eukaryotically expressed recombinant ANGPT4 maintained antibacterial activity and binding activity to bacteria and LTA, LPS and PGN. All these suggested that ANGPT4 could not only capable of recognizing pathogens via LTA, LPS and PGN, but also capable of killing the Gram-positive and Gram-negative bacteria, in innate immune response. This work also provides further information to understand the biological roles of FREPs and the innate immunity in vertebrates.


Assuntos
Proteínas de Transporte , Ácidos Teicoicos , Peixe-Zebra , Animais , Lipopolissacarídeos/farmacologia , Peptidoglicano/farmacologia , Antibacterianos , Fibrinogênio , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Bactérias/metabolismo , Proteínas de Peixe-Zebra/genética
2.
Microbiol Res ; 282: 127655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402726

RESUMO

Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.


Assuntos
Bactérias Gram-Negativas , Percepção de Quorum , Percepção de Quorum/fisiologia , Bactérias Gram-Negativas/fisiologia , Bactérias , Bactérias Gram-Positivas/fisiologia , Virulência
3.
Fish Shellfish Immunol ; 142: 109093, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722437

RESUMO

C-type lectins (CTLs), a superfamily of Ca2+-dependent carbohydrate-recognition proteins, serve as pattern recognition receptors (PRRs) in the immune response of many species. However, little is currently known about the CTLs of the commercially and ecologically important bivalve species, blood clam (Tegillarca granosa). In this study, a CTL (designated as TgCTL-1) with a single carbohydrate-recognition domain (CRD) containing unique QPN/WDD motifs was identified in the blood clam through transcriptome and whole-genome searching. Multiple alignment and phylogenetic analysis strongly suggested that TgCTL-1 was a new member of the CTL superfamily. Expression analysis demonstrated that TgCTL-1 was highly expressed in the hemocytes and visceral mass of the clam under normal condition. In addition, the expression of TgCTL-1 was shown to be significantly up-regulated upon pathogen challenge. Moreover, the recombinant TgCTL-1 (rTgCTL-1) displayed agglutinating and binding activities against both the gram-positive and gram-negative bacteria tested in a Ca2+-dependent manner. Furthermore, it was found that the in vitro phagocytic activity of hemocytes was significantly enhanced by rTgCTL-1. In general, our results showed that TgCTL-1 was an inducible acute-phase secretory protein, playing crucial roles in recognizing, agglutinating, and binding to pathogenic bacteria as well as modulating phagocytic activity of hemocytes in the innate immune defense of blood clam.


Assuntos
Arcidae , Bivalves , Animais , Imunidade Inata/genética , Sequência de Aminoácidos , Sequência de Bases , Bactérias Gram-Negativas/fisiologia , Lectinas Tipo C , Filogenia , Antibacterianos , Bactérias Gram-Positivas/fisiologia , Bivalves/metabolismo , Arcidae/metabolismo , Carboidratos
4.
J Immunol ; 210(3): 245-258, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548464

RESUMO

DM9 domain containing protein (DM9CP) is a family of newly identified recognition receptors exiting in most organisms except plants and mammals. In the current study, to our knowledge, a novel DM9CP-5 (CgDM9CP-5) with two tandem DM9 repeats and high expression level in gill was identified from the Pacific oyster, Crassostrea gigas. The deduced amino acid sequence of CgDM9CP-5 shared 62.1% identity with CgDM9CP-1 from C. gigas, and 47.8% identity with OeFAMeT from Ostrea edulis. The recombinant CgDM9CP-5 (rCgDM9CP-5) was able to bind d-mannose, LPS, peptidoglycan, and polyinosinic-polycytidylic acid, as well as fungi Pichia pastoris, Gram-negative bacteria Escherichia coli and Vibrio splendidus, and Gram-positive bacteria Staphylococcus aureus. The mRNA transcript of CgDM9CP-5 was highly expressed in gill, and its protein was mainly distributed in gill mucus. After the stimulations with V. splendidus and mannose, mRNA expression of CgDM9CP-5 in oyster gill was significantly upregulated and reached the peak level at 6 and 24 h, which was 13.58-fold (p < 0.05) and 14.01-fold (p < 0.05) of that in the control group, respectively. CgDM9CP-5 was able to bind CgIntegrin both in vivo and in vitro. After CgDM9CP-5 or CgIntegrin was knocked down by RNA interference, the phosphorylation levels of JNK and P38 in the MAPK pathway decreased, and the expression levels of CgIL-17s (CgIL-17-3, -4, -5, and -6), Cg-Defh1, Cg-Defh2, and CgMolluscidin were significantly downregulated. These results suggested that there was a pathway of DM9CP-5-Integrin-MAPK mediated by CgDM9CP-5 to regulate the release of proinflammatory factors and defensins in C. gigas.


Assuntos
Crassostrea , Integrinas , Animais , Integrinas/metabolismo , Crassostrea/genética , Sequência de Aminoácidos , Bactérias Gram-Negativas/fisiologia , RNA Mensageiro/genética , Hemócitos , Imunidade Inata/genética , Mamíferos/genética
5.
Biochim Biophys Acta Proteins Proteom ; 1871(2): 140883, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455808

RESUMO

Multidrug resistance of bacteria and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, make it urgent to develop new antibiotics. Here, we evaluate the antibacterial and anti-biofilm properties of ticlopidine (TP), an anti-platelet aggregation drug, TP showed antibacterial activity against both gram-positive (MRSA) and gram-negative (E. coli, and P. aeruginosa) bacteria over a long treatment period. TP significantly reduced the survival of gram-negative bacteria in human blood though impact on gram-positives was more limited. TP may cause death in MRSA by inhibiting staphyloxanthin pigment synthesis, leading to oxidative stress, while scanning electron microscopy imaging indicate a loss of membrane integrity, damage, and consequent death due to lysis in gram-negative bacteria. TP showed good anti-biofilm activity against P. aeruginosa and MRSA, and a stronger biofilm degradation activity on P. aeruginosa compared to MRSA. Measuring fluorescence of the amyloid-reporter Thioflavin T (ThT) in biofilm implicated inhibition of amyloid formation as part of TP activity. This was confirmed by assays on the purified protein in P. aeruginosa, FapC, whose fibrillation kinetics was inhibited by TP. TP prolonged the lag phase of aggregation and reduced the subsequent growth rate and prolonging the lag phase to very long times provides ample opportunity to exert TP's antibacterial effect. We conclude that TP shows activity as an antibiotic against both gram-positive and gram-negative bacteria thanks to a broad range of activities, targeting bacterial metabolic processes, cellular structures and the biofilm matrix.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas , Biofilmes
6.
Open Biol ; 12(8): 220143, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35920042

RESUMO

Understanding bacterial communication mechanisms is imperative to improve our current understanding of bacterial infectivity and find alternatives to current modes of antibacterial therapeutics. Both Gram-positive and Gram-negative bacteria use quorum sensing (QS) to regulate group behaviours and associated phenotypes in a cell-density-dependent manner. Group behaviours, phenotypic expression and resultant infection and disease can largely be attributed to efficient bacterial communication. Of particular interest are the communication mechanisms of Gram-positive bacteria known as streptococci. This group has demonstrated marked resistance to traditional antibiotic treatment, resulting in increased morbidity and mortality of infected hosts and an ever-increasing burden on the healthcare system. Modulating circuits and mechanisms involved in streptococcal communication has proven to be a promising anti-virulence therapeutic approach that allows managing bacterial phenotypic response but does not affect bacterial viability. Targeting the chemical signals bacteria use for communication is a promising starting point, as manipulation of these signals can dramatically affect resultant bacterial phenotypes, minimizing associated morbidity and mortality. This review will focus on the use of modified peptide signals in modulating the development of proliferative phenotypes in different streptococcal species, specifically regarding how such modification can attenuate bacterial infectivity and aid in developing future alternative therapeutic agents.


Assuntos
Bactérias Gram-Negativas , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Bactérias , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Fenótipo , Sinais Direcionadores de Proteínas/genética
7.
Clin Oral Investig ; 26(3): 2209-2221, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35122548

RESUMO

OBJECTIVE: The aim of this study was to systematically update the evidence for associations between host genetic variants and subgingival microbial detection and counts. MATERIALS AND METHODS: Following a previous systematic review (Nibali et al. J Clin Periodontol 43(11): 889-900, 15), an update of a systematic search of the literature was conducted in Ovid Medline, Embase, LILACS, and Cochrane Library for studies reporting data on host genetic variants and detection of microbes subgingivally published in the last 6 years. RESULTS: A total of 19 studies were included in the review, from an initial search of 2797 titles. Studies consisted mainly of candidate gene studies and of one genome-wide analysis. A total of 62 studies were considered for summary findings, including 43 identified in the previous systematic review of studies published up to 2015. Meta-analyses were done when appropriate including both papers in the original review and in the update. Meta-analyses revealed lack of associations between IL1 composite genotype and subgingival detection of Aggregatibacter acinomycetemcomitans, Poprhyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Prevotella intermedia. Promising evidence is emerging from other genetic variants and from sub-analyses of data from genome-association studies. Among other studies with candidate-gene, target SNPs were mainly within the IL10, IL6, IL4, IL8, IL17A, and VDR gene. CONCLUSIONS: IL1 composite genotype does not seem to be associated with subgingival microbial detection. Promising associations should be pursued by future studies, including studies employing -OMICS technologies. CLINICAL RELEVANCE: A better knowledge of which host genetic variant predispose to subgingival microbial colonization and to the development of progression of periodontal disease could potentially help to better understand periodontal disease pathogenesis and help with its management.


Assuntos
Gengiva , Bactérias Gram-Negativas , Genótipo , Gengiva/microbiologia , Bactérias Gram-Negativas/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Interleucina-1/genética
8.
PLoS One ; 17(2): e0263593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202421

RESUMO

Magnetotactic bacteria (MTB) rely on magnetotaxis to effectively reach their preferred living habitats, whereas experimental investigation of magnetotactic advantage in stable sediment is currently lacking. We studied two wild type MTB (cocci and rod-shaped M. bavaricum) in sedimentary environment under exposure to geomagnetic field in the laboratory, zero field and an alternating field whose polarity was switched every 24 hours. The mean concentration of M. bavaricum dropped by ~50% during 6 months in zero field, with no clear temporal trend suggesting an extinction. Cell numbers recovered to initial values within ~1.5 months after the Earth's field was reset. Cocci displayed a larger temporal variability with no evident population changes in zero field. The alternating field experiment produced a moderate decrease of M. bavaricum concentrations and nearby extinction of cocci, confirming the active role of magnetotaxis in sediment and might point to a different magnetotactic mechanism for M. bavaricum which possibly benefited them to survive field reversals in geological periods. Our findings provide a first quantification of magnetotaxis advantage in sedimentary environment.


Assuntos
Fenômenos Fisiológicos Bacterianos , Bactérias Gram-Negativas/fisiologia , Magnetismo , Magnetossomos/química , Planeta Terra , Ecossistema , Sedimentos Geológicos , Bactérias Gram-Negativas/química , Magnetossomos/fisiologia , Filogenia , RNA Ribossômico 16S
9.
Antimicrob Resist Infect Control ; 11(1): 8, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033191

RESUMO

BACKGROUND: Infectious diseases are among the leading causes of death in many low-income countries, such as Ethiopia. Without reliable local data concerning causative pathogens and antimicrobial resistance, empiric treatment is suboptimal. The objective of this study was to characterize gram-negative bacteria (GNB) as pathogens and their resistance pattern in hospitalized patients with infections in central Ethiopia. METHODS: Patients ≥ 1 year of age with fever admitted to the Asella Referral and Teaching Hospital from April 2016 to June 2018 were included. Blood and other appropriate clinical specimens were collected and cultured on appropriate media. Antibiotic susceptibility testing (AST) was performed using the Kirby-Bauer method and VITEK® 2. Species identification and detection of resistance genes were conducted using MALDI-ToF MS (VITEK® MS) and PCR, respectively. RESULTS: Among the 684 study participants, 54.2% were male, and the median age was 22.0 (IQR: 14-35) years. Blood cultures were positive in 5.4% (n = 37) of cases. Among other clinical samples, 60.6% (20/33), 20.8% (5/24), and 37.5% (3/8) of swabs/pus, urine and other body fluid cultures, respectively, were positive. Among 66 pathogenic isolates, 57.6% (n = 38) were GNB, 39.4% (n = 26) were gram-positive, and 3.0% (n = 2) were Candida species. Among the isolated GNB, 42.1% (16/38) were Escherichia coli, 23.7% (9/38) Klebsiella pneumoniae and 10.5% (4/38) Pseudomonas aeruginosa. In total, 27/38 gram-negative isolates were available for further analysis. Resistance rates were as follows: ampicillin/sulbactam, 92.6% (n = 25); cefotaxime, 88.9% (n = 24); ceftazidime, 74.1% (n = 20); cefepime, 74.1% (n = 20); gentamicin, 55.6% (n = 15); piperacillin/tazobactam, 48.1% (n = 13); meropenem, 7.4% (n = 2); and amikacin, 3.7% (n = 1). The blaNDM-1 gene was detected in one K. pneumoniae and one Acinetobacter baumannii isolate, which carried an additional blaOXA-51 gene. The ESBL enzymes were detected in 81.5% (n = 22) of isolates as follows: TEM, 77.2% (n = 17); CTX-M-1 group, 68.2% (n = 15); SHV group, 27.3% (n = 6); and CTX-M-9 group, 9.1% (n = 2). Based on the in vitro antimicrobial susceptibility results, empiric treatment initiated in 13 of 18 (72.2%) patients was likely ineffective. CONCLUSION: We report a high prevalence of ESBL-producing bacteria (81.5%) and carbapenem resistance (7.4%), with more than half of GNB carrying two or more ESBL enzymes resulting in suboptimal empiric antibiotic therapy. These findings indicate a need for local and national antimicrobial resistance surveillance and the strengthening of antimicrobial stewardship programs.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Etiópia/epidemiologia , Feminino , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
10.
Microbiol Spectr ; 9(3): e0191021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937173

RESUMO

Due to their phylogenetic proximity to humans, nonhuman primates (NHPs) are considered an adequate choice for a basic and preclinical model of sepsis. Gram-negative bacteria are the primary causative of sepsis. During infection, bacteria continuously release the potent toxin lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to death. Our previous research has demonstrated in vitro and in vivo using a mouse model of septic shock that Fh15, a recombinant variant of the Fasciola hepatica fatty acid binding protein, acts as an antagonist of Toll-like receptor 4 (TLR4) suppressing the LPS-induced proinflammatory cytokine storm. The present communication is a proof-of concept study aimed to demonstrate that a low-dose of Fh15 suppresses the cytokine storm and other inflammatory markers during the early phase of sepsis induced in rhesus macaques by intravenous (i.v.) infusion with lethal doses of live Escherichia coli. Fh15 was administered as an isotonic infusion 30 min prior to the bacterial infusion. Among the novel findings reported in this communication, Fh15 (i) significantly prevented bacteremia, suppressed LPS levels in plasma, and the production of C-reactive protein and procalcitonin, which are key signatures of inflammation and bacterial infection, respectively; (ii) reduced the production of proinflammatory cytokines; and (iii) increased innate immune cell populations in blood, which suggests a role in promoting a prolonged steady state in rhesus macaques even in the presence of inflammatory stimuli. This report is the first to demonstrate that a F. hepatica-derived molecule possesses potential as an anti-inflammatory drug against sepsis in an NHP model. IMPORTANCE Sepsis caused by Gram-negative bacteria affects 1.7 million adults annually in the United States and is one of the most important causes of death at intensive care units. Although the effective use of antibiotics has resulted in improved prognosis of sepsis, the pathological and deathly effects have been attributed to the persistent inflammatory cascade. There is a present need to develop anti-inflammatory agents that can suppress or neutralize the inflammatory responses and prevent the lethal consequences of sepsis. We demonstrated here that a small molecule of 14.5 kDa can suppress the bacteremia, endotoxemia, and many other inflammatory markers in an acute Gram-negative sepsis rhesus macaque model. These results reinforce the notion that Fh15 constitutes an excellent candidate for drug development against sepsis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Bacteriemia/tratamento farmacológico , Fasciola hepatica/metabolismo , Proteínas de Ligação a Ácido Graxo/administração & dosagem , Bactérias Gram-Negativas/fisiologia , Proteínas de Helminto/administração & dosagem , Animais , Anti-Inflamatórios/metabolismo , Bacteriemia/genética , Bacteriemia/imunologia , Bacteriemia/microbiologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Fasciola hepatica/química , Fasciola hepatica/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Humanos , Macaca mulatta , Masculino , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
11.
Microbiol Spectr ; 9(3): e0063321, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937189

RESUMO

Critical illness and extracorporeal circulation, such as extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT), may alter the pharmacokinetics of piperacillin-tazobactam. We aimed to develop a population pharmacokinetic model of piperacillin-tazobactam in critically ill patients during ECMO or CRRT and investigate the optimal dosage regimen needed to achieve ≥90% of patients attaining the piperacillin pharmacodynamic target of 100% of dosage time above MIC of 16 mg/L. This prospective observational study included 26 ECMO patients, of which 13 patients received continuous venovenous hemodiafiltration (CVVHDF). A population pharmacokinetic model was developed using nonlinear mixed-effects models, and Monte Carlo simulations were performed to evaluate creatinine clearance (CrCL) and infusion method in relation to the probability of target attainment (PTA) in four patient groups according to combination of ECMO and CVVHDF. A total of 244 plasma samples were collected. In a two-compartment model, clearance decreased during ECMO and CVVHDF contributed to an increase in the volume of distribution. The range of PTA reduction as CrCL increased was greater in the order of intermittent bolus, extended infusion, and continuous infusion method. Continuous infusion should be considered in critically ill patients with CrCL of ≥60 mL/min, and at least 12, 16, and 20 g/day was required for CrCL of <40, 40 to 60, and 60 to 90 mL/min, respectively, regardless of ECMO or CVVHDF. In patients with CrCL of ≥90 mL/min, even a continuous infusion of 24 g/day was insufficient to achieve adequate PTA. Therefore, further research on permissible high continuous infusion dose focused on the risk of toxicity is required. (This trial has been registered at ClinicalTrials.gov under registration no. NCT02581280, December 1, 2014.) IMPORTANCE To the best of our knowledge, this is the first large prospective pharmacokinetic/pharmacodynamic (PK/PD) study of piperacillin-tazobactam in ECMO patients. We used piperacillin-tazobactam plasma concentration data from four different cases (concomitant use of ECMO and CVVHDF, receiving ECMO only, weaned from ECMO and receiving CVVHDF, and weaned from ECMO and not receiving CVVHDF) to provide preliminary insights into the incremental effects of critical illness, ECMO, and CVVHDF on PK. Our analysis revealed that volume of distribution increased in patients on CVVHDF and clearance decreased during ECMO and as creatinine clearance was reduced. When targeting 100% fT>MIC (16 mg/L, clinical breakpoint for Pseudomonas aeruginosa), continuous infusions would have achieved the highest percentage of target attainment compared to intermittent bolus or extended infusion if the total daily dose was the same. Continuous infusion should be considered in critically ill patients with creatinine clearance of ≥60 mL/min, regardless of ECMO or CVVHDF.


Assuntos
Antibacterianos/farmacocinética , Estado Terminal/terapia , Infecção Hospitalar/tratamento farmacológico , Oxigenação por Membrana Extracorpórea/efeitos adversos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Piperacilina/farmacocinética , Terapia de Substituição Renal/efeitos adversos , Tazobactam/farmacocinética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Terapia Combinada , Creatinina/sangue , Infecção Hospitalar/sangue , Infecção Hospitalar/etiologia , Infecção Hospitalar/microbiologia , Feminino , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Negativas/sangue , Infecções por Bactérias Gram-Negativas/etiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Piperacilina/uso terapêutico , Estudos Prospectivos , Tazobactam/uso terapêutico , Adulto Jovem
12.
Microbiol Spectr ; 9(3): e0051221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935418

RESUMO

Acanthamoeba castellanii is a free-living, pathogenic ameba found in the soil and water. It invades the body through ulcerated skin, the nasal passages, and eyes and can cause blinding keratitis and granulomatous encephalitis. However, the mechanisms underlying the opportunistic pathogenesis of A. castellanii remain unclear. In this study, we observed that commensal bacteria significantly reduced the cytotoxicity of the ameba on mammalian cells. This effect occurred in the presence of both Gram-positive and Gram-negative commensals. Additionally, commensals mitigated the disruption of cell junctions. Ex vivo experiments on mouse eyeballs further showed that the commensals protected the corneal epithelial layer. Together, these findings indicate that A. castellanii is pathogenic to individuals with a dysbiosis of the microbiota at infection sites, further highlighting the role of commensals as a natural barrier during parasite invasion. IMPORTANCE Acanthamoeba castellanii, an opportunistic protozoan widely present in the environment, can cause Acanthamoeba keratitis and encephalitis in humans. However, only a few reports describe how the ameba acts as an opportunistic pathogen. Our study showed that the normal microbiota interfered with the cytotoxicity of Acanthamoeba, persevered during Acanthamoeba invasion, and reduced corneal epithelium peeling in the mouse eyeball model. This suggests that commensals may act as a natural barrier against Acanthamoeba invasion. In future, individuals who suffer from Acanthamoeba keratitis should be examined for microbiota absence or dysbiosis to reduce the incidence of Acanthamoeba infection in clinical settings.


Assuntos
Ceratite por Acanthamoeba/parasitologia , Acanthamoeba castellanii/fisiologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Ceratite por Acanthamoeba/microbiologia , Animais , Córnea/microbiologia , Córnea/parasitologia , Epitélio/parasitologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simbiose
13.
Molecules ; 26(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34641304

RESUMO

The current research work illustrates an economical and rapid approach towards the biogenic synthesis of silver nanoparticles using aqueous Punica granatum leaves extract (PGL-AgNPs). The optimization of major parameters involved in the biosynthesis process was done using Box-Behnken Design (BBD). The effects of different independent variables (parameters), namely concentration of AgNO3, temperature and ratio of extract to AgNO3, on response viz. particle size and polydispersity index were analyzed. As a result of experiment designing, 17 reactions were generated, which were further validated experimentally. The statistical and mathematical approaches were employed on these reactions in order to interpret the relationship between the factors and responses. The biosynthesized nanoparticles were initially characterized by UV-vis spectrophotometry followed by physicochemical analysis for determination of particle size, polydispersity index and zeta potential via dynamic light scattering (DLS), SEM and EDX studies. Moreover, the determination of the functional group present in the leaves extract and PGL-AgNPs was done by FTIR. Antibacterial and antibiofilm efficacies of PGL-AgNPs against Gram-positive and Gram-negative bacteria were further determined. The physicochemical studies suggested that PGL-AgNPs were round in shape and of ~37.5 nm in size with uniform distribution. Our studies suggested that PGL-AgNPs exhibit potent antibacterial and antibiofilm properties.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Punica granatum/química , Nitrato de Prata/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Nitrato de Prata/química
14.
Insect Biochem Mol Biol ; 139: 103669, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666189

RESUMO

In vertebrates and invertebrates, the insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) cascade is highly conserved and plays a vital role in many different physiological processes. Among the many tissues that respond to IIS in mosquitoes, the fat body has a central role in metabolism, lifespan, reproduction, and innate immunity. We previously demonstrated that fat body specific expression of active Akt, a key IIS signaling molecule, in adult Anopheles stephensi and Aedes aegypti activated the IIS cascade and extended lifespan. Additionally, we found that transgenic females produced more vitellogenin (Vg) protein than non-transgenic mosquitoes, although this did not translate into increased fecundity. These results prompted us to further examine how IIS impacts immunity, metabolism, growth and development of these transgenic mosquitoes. We observed significant changes in glycogen, trehalose, triglycerides, glucose, and protein in young (3-5 d) transgenic mosquitoes relative to non-transgenic sibling controls, while only triglycerides were significantly changed in older (18 d) transgenic mosquitoes. More importantly, we demonstrated that enhanced fat body IIS decreased both the prevalence and intensity of Plasmodium falciparum infection in transgenic An. stephensi. Additionally, challenging transgenic An. stephensi with Gram-positive and Gram-negative bacteria altered the expression of several antimicrobial peptides (AMPs) and two anti-Plasmodium genes, nitric oxide synthase (NOS) and thioester complement-like protein (TEP1), relative to non-transgenic controls. Increased IIS in the fat body of adult female An. stephensi had little to no impact on body size, growth or development of progeny from transgenic mosquitoes relative to non-transgenic controls. This study both confirms and expands our understanding of the critical roles insulin signaling plays in regulating the diverse functions of the mosquito fat body.


Assuntos
Anopheles/fisiologia , Corpo Adiposo/metabolismo , Interações Hospedeiro-Patógeno , Insulina/fisiologia , Transdução de Sinais , Animais , Anopheles/microbiologia , Anopheles/parasitologia , Feminino , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Interações Hospedeiro-Parasita , Plasmodium falciparum/fisiologia
15.
Life Sci ; 287: 120085, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34699905

RESUMO

AIMS: The spread of plasmid-mediated polymyxin resistance has jeopardized the use of polymyxin, the last defender that combats infections caused by multidrug-resistant (MDR) gram-negative pathogens. MAIN METHODS: In this study, phloretin, as a monomeric compound extracted from natural plants, showed a good synergistic effect with polymyxin E against gram-negative bacteria, as evaluated by minimal inhibit concentration (MIC) assay and a series of assays, including growth curve, time-killing, and Western blot assays. A model of mice infected by Salmonella sp. stain HYM2 was established to further identify the synergistic effect of phloretin with polymyxin E. KEY FINDINGS: The results suggested that phloretin had the potential ability to recover the antibacterial sensitivity of polymyxin E from 64 µg/mL to no more than 2 µg/mL in E. coli ZJ478 or in Salmonella sp. stain HYM2 with a 32-fold decrease. A series of strains, including mcr-1-positive and mcr-1-negative strains, were treated with a combination of phloretin and polymyxin E, and the fractional inhibitory concentration (FIC) values were all found to be below 0.5. However, the combination of phloretin and polymyxin E did not lead to bacterial resistance. In vivo, the survival rate of infected mice reached nearly 80% with the combination treatment, and the cecal colony value also decreased significantly. SIGNIFICANCE: All the above results indicated that phloretin is a potential polymyxin potentiator to combat gram-negative stains.


Assuntos
Antibacterianos/administração & dosagem , Colistina/administração & dosagem , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Floretina/administração & dosagem , Animais , Células CACO-2 , Farmacorresistência Bacteriana Múltipla/fisiologia , Sinergismo Farmacológico , Feminino , Bactérias Gram-Negativas/fisiologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos
16.
Adv Sci (Weinh) ; 8(21): e2102327, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34494724

RESUMO

The development of potent antibiotic alternatives with rapid bactericidal properties is of great importance in addressing the current antibiotic crisis. One representative example is the topical delivery of predatory bacteria to treat ocular bacterial infections. However, there is a lack of suitable methods for the delivery of predatory bacteria into ocular tissue. This work introduces cryomicroneedles (cryoMN) for the ocular delivery of predatory Bdellovibrio bacteriovorus (B. bacteriovorus) bacteria. The cryoMN patches are prepared by freezing B. bacteriovorus containing a cryoprotectant medium in a microneedle template. The viability of B. bacteriovorus in cryoMNs remains above 80% as found in long-term storage studies, and they successfully impede the growth of gram-negative bacteria in vitro or in a rodent eye infection model. The infection is significantly relieved by nearly six times through 2.5 days of treatment without substantial effects on the cornea thickness and morphology. This approach represents the safe and efficient delivery of new class of antimicrobial armamentarium to otherwise impermeable ocular surface and opens up new avenues for the treatment of ocular surface disorders.


Assuntos
Bdellovibrio bacteriovorus/fisiologia , Infecções Oculares/microbiologia , Injeções Intraoculares/métodos , Administração Tópica , Animais , Bdellovibrio bacteriovorus/crescimento & desenvolvimento , Córnea/anatomia & histologia , Córnea/fisiologia , Modelos Animais de Doenças , Infecções Oculares/diagnóstico por imagem , Infecções Oculares/terapia , Bactérias Gram-Negativas/fisiologia , Injeções Intraoculares/instrumentação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agulhas , Tomografia de Coerência Óptica
17.
Science ; 373(6552)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34437126

RESUMO

Activation of cell-autonomous defense by the immune cytokine interferon-γ (IFN-γ) is critical to the control of life-threatening infections in humans. IFN-γ induces the expression of hundreds of host proteins in all nucleated cells and tissues, yet many of these proteins remain uncharacterized. We screened 19,050 human genes by CRISPR-Cas9 mutagenesis and identified IFN-γ-induced apolipoprotein L3 (APOL3) as a potent bactericidal agent protecting multiple non-immune barrier cell types against infection. Canonical apolipoproteins typically solubilize mammalian lipids for extracellular transport; APOL3 instead targeted cytosol-invasive bacteria to dissolve their anionic membranes into human-bacterial lipoprotein nanodiscs detected by native mass spectrometry and visualized by single-particle cryo-electron microscopy. Thus, humans have harnessed the detergent-like properties of extracellular apolipoproteins to fashion an intracellular lysin, thereby endowing resident nonimmune cells with a mechanism to achieve sterilizing immunity.


Assuntos
Apolipoproteínas L/metabolismo , Membrana Celular/metabolismo , Citosol/microbiologia , Bactérias Gram-Negativas/fisiologia , Interferon gama/imunologia , Apolipoproteínas L/química , Apolipoproteínas L/genética , Membrana Externa Bacteriana/metabolismo , Bacteriólise , Sistemas CRISPR-Cas , Membrana Celular/química , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Células Cultivadas , Detergentes/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Edição de Genes , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Negativas/ultraestrutura , Humanos , Imunidade Inata , Lipoproteínas/química , Viabilidade Microbiana , Antígenos O/metabolismo , Domínios Proteicos , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia , Salmonella typhimurium/ultraestrutura , Solubilidade
18.
Toxins (Basel) ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34437404

RESUMO

It is widely recognized that periodontal disease is an inflammatory entity of infectious origin, in which the immune activation of the host leads to the destruction of the supporting tissues of the tooth. Periodontal pathogenic bacteria like Porphyromonas gingivalis, that belongs to the complex net of oral microflora, exhibits a toxicogenic potential by releasing endotoxins, which are the lipopolysaccharide component (LPS) available in the outer cell wall of Gram-negative bacteria. Endotoxins are released into the tissues causing damage after the cell is lysed. There are three well-defined regions in the LPS: one of them, the lipid A, has a lipidic nature, and the other two, the Core and the O-antigen, have a glycosidic nature, all of them with independent and synergistic functions. Lipid A is the "bioactive center" of LPS, responsible for its toxicity, and shows great variability along bacteria. In general, endotoxins have specific receptors at the cells, causing a wide immunoinflammatory response by inducing the release of pro-inflammatory cytokines and the production of matrix metalloproteinases. This response is not coordinated, favoring the dissemination of LPS through blood vessels, as well as binding mainly to Toll-like receptor 4 (TLR4) expressed in the host cells, leading to the destruction of the tissues and the detrimental effect in some systemic pathologies. Lipid A can also act as a TLRs antagonist eliciting immune deregulation. Although bacterial endotoxins have been extensively studied clinically and in a laboratory, their effects on the oral cavity and particularly on periodontium deserve special attention since they affect the connective tissue that supports the tooth, and can be linked to advanced medical conditions. This review addresses the distribution of endotoxins associated with periodontal pathogenic bacteria and its relationship with systemic diseases, as well as the effect of some therapeutic alternatives.


Assuntos
Endotoxinas/metabolismo , Bactérias Gram-Negativas/metabolismo , Doenças Periodontais/microbiologia , Animais , Biofilmes , Bactérias Gram-Negativas/fisiologia , Humanos
19.
Microbiol Spectr ; 9(1): e0055021, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34406812

RESUMO

Bacterial bloodstream infection (BSI) represents a significant complication in hematologic patients. However, factors leading to BSI and progression to end-organ disease and death are understood only partially. The study analyzes host and microbial risk factors and assesses their impact on BSI development and mortality. A total of 96 patients with hematological malignancies and BSI were included in the study. Host-associated risk factors and all causes of mortality were analyzed by multivariable logistic regression at 30 days after BSI onset of the first neutropenic episode. The multidrug-resistant profile and biofilm production of bacterial isolates from primary BSI were included in the analysis. Median age was 60 years. The underlying diagnoses were acute leukemia (55%), lymphoma (31%), and myeloma (14%). A total of 96 bacterial isolates were isolated from BSIs. Escherichia coli was the most common isolate (29.2%). Multidrug-resistant bacteria caused 10.4% of bacteremia episodes. Weak biofilm producers (WBPs) were significantly (P < 0.0001) more abundant (72.2%) than strong biofilm producers (SBPs) (27.8%). Specifically, SBPs were 7.1% for E. coli, 93.7% for P. aeruginosa, 50% for K. pneumoniae, and 3.8% for coagulase-negative staphylococci. Mortality at day 30 was 8.3%, and all deaths were attributable to Gram-negative bacteria. About 22% of all BSIs were catheter-related BSIs (CRBSIs) and mostly caused by Gram-positive bacteria (79.0%). However, CRBSIs were not correlated with biofilm production levels (P = 0.75) and did not significantly impact the mortality rate (P = 0.62). Conversely, SBP bacteria were an independent risk factor (P = 0.018) for developing an end-organ disease. In addition, multivariate analysis indicated that SBPs (P = 0.013) and multidrug-resistant bacteria (P = 0.006) were independent risk factors associated with 30-day mortality. SBP and multidrug-resistant (MDR) bacteria caused a limited fraction of BSI in these patients. However, when present, SBPs raise the risk of end-organ disease and, together with an MDR phenotype, can independently and significantly concur at increasing the risk of death. IMPORTANCE Bacterial bloodstream infection (BSI) is a significant complication in hematologic patients and is associated with high mortality rates. Despite improvements in BSI management, factors leading to sepsis are understood only partially. This study analyzes the contribution of bacterial biofilm on BSI development and mortality in patients with hematological malignancies (HMs). In this work, weak biofilm producers (WBPs) were significantly more abundant than strong biofilm producers (SBPs). However, when present, SBP bacteria raised the risk of end-organ disease in HM patients developing a BSI. Besides, SBPs, together with a multidrug-resistant (MDR) phenotype, independently and significantly concur at increasing the risk of death in HM patients. The characterization of microbial biofilms may provide key information for the diagnosis and therapeutic management of BSI and may help develop novel strategies to either eradicate or control harmful microbial biofilms.


Assuntos
Bacteriemia/microbiologia , Bacteriemia/mortalidade , Sistema Cardiovascular/microbiologia , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Neoplasias Hematológicas/complicações , Adulto , Idoso , Bacteriemia/etiologia , Feminino , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
ACS Appl Mater Interfaces ; 13(34): 40325-40331, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416106

RESUMO

Biofilm infections caused by multidrug-resistant (MDR) bacteria are an urgent global health threat. Incorporation of natural essential oils into biodegradable oil-in-water cross-linked polymeric nanoemulsions (X-NEs) provides effective eradication of MDR bacterial biofilms. The X-NE platform combines the degradability of functionalized poly(lactic acid) polymers with the antimicrobial activity of carvacrol (from oregano oil). These X-NEs exhibited effective penetration and killing of biofilms formed by pathogenic bacteria. Biofilm-fibroblast coculture models demonstrate that X-NEs selectively eliminate bacteria without harming mammalian cells, making them promising candidates for antibiofilm therapeutics.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cimenos/farmacologia , Portadores de Fármacos/química , Emulsões/química , Poliésteres/química , Animais , Portadores de Fármacos/toxicidade , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Emulsões/toxicidade , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Poliésteres/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...